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To summarize, therefore, if a given p(z) is
to be capable of physical realization as a cas-
cade of lossless transmission lines terminated
by a resistor the following conditions must be
satisfied.

1) p(z) must be a unit real.

2) |o(£ D) =1

3) p(0)#p( ). '

4) The coefficients of the numerator and
denominator polynomials of p(z) must
satisfy (5).

Conditions 1) and 4) above are both exten-
sions of Young’s necessary and sufficient con-
ditions for the removal of a unit element with
consequent reduction in the degree of o(z)
and they are in themselves sufficient. Condi-
tions 2) and 3) are in the nature of tests which
can be rapidly applied to eliminate forms of
p(z) impossible for the realization desired.
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Coupling to a Desired Wave

Technical situations often arise where a
wave of given characteristics must be propa-
gated from a transmitting antenna to a receiv-
ing antenna. An example is shown in Fig. 1,
where a Goubau wave must be launched along
a dielectric-clad metallic conductor. The prob-
lem then arises of finding out how efficiently
the wave is launched, i.e., how much of the
total radiated power is propagated in the de-
sired form. In this correspondence we at-
tempt to give a very general definition of this
coupling coefficient. Figure 2 illustrates a typ-
ical structure in which a radiating system is
bounded by a surface S; consisting of a con-
ducting walil S” and a radiating aperture S’.
In particular, S’ can be closed surface com-
pletely surrounding the sources 7. The desired
wave is characterized by a tangential electric
field E;: on S’. The actual tangential field is
E:, and our problem consists of splitting E; as

Et = )\Eu + Etg. (1)

The complex number N represents the
“launching coefficient” of the desired wave. In
the language of functional analysis, AE.; is the
projection of the actual wave (uniquely deter-
mined by its E;) on the subspace formed by
the desired wave. To separate the two parts,
the desired wave AE;; should be orthogonal,
in some sense, to the complementary wave
E.. Tt is therefore necessary to introduce a
suitable definition of the scalar product. This
definition should lead to a splitting such that
the sum of the powers carried by the indi-
vidual terms in (1) is equal to the total radi-
ated power. As “power orthogonality” is in-
volved, the definition of the scalar product
must necessarily contain the tangential com-
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Fig. 2. A typical radiating system.

ponents of & and I on.S’, which can be collec-
tively represented by a four-vector €. A suit-
able definition for the product of waves
whose four vectors are, respectively, &, and
€ 1S

1 — —
@iﬁ=~ffﬂw@ﬁXHw
4 8

+Eo X Hi*dS. (2)

It is immediately apparent that the scalar
product (&, &) of a wave with itself is the
(real) average power radiated by the wave. It
is also apparent that the scalar product of two
waves depends, in general, on the boundary
surface used to evaluate (€., é). Under cer-
tain circumstances, however, the value re-
mains the same for two surfaces such as Si
and S in Fig. 2. This is true when:

1) the medium between S and S, is Her-
mitian (condition: e=¢f and p=put);
example: a lossless plasma.

2) there are, in addition, no power sources
between S; and S. (i.e., /=0 for both
waves).

_ The property is easily proved by integrat-
ing
div (Ee* X Hy + F X Ho¥)
= Iy-curl E,* — E*-curl Hy + H,*
ccurl Ey — Ep-curl H,*
= Hy- (jou*-Ho*) — Eo*- (jweEy)
+ Ho* (—jop-Hy) — By (—joe* - E*)
=0

between S: and S, Assume, in particular,
that S. is the sphere at infinity. The fields on
that sphere have the general form
_ __ g IkR
E=F—
R
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Launching of a Goubau wave.

and

with

Ro = (120#)9

For such case,
o1 — =
€u, &) = —— E*- FydQ. 3
(& &) 2Roff b ®)

This equation shows that (&, &) is not only
real, but also non-negative when the external
medium satisfies the conditions enunciated
above. Tt also shows that fields which have
power orthogonality on a given surface have
radiation vectors F, and 7, satisfying

f fz‘ﬁa*-F‘bdsz _ @)

Having thus explored some of the proper-
ties of the power scalar product, we are now
in a position to determine A in (1). Use
of the orthogonality requirement for & and
& =E—N§ yields

&8 )

(&, &)
It is to be noticed that the “desired wave” is
determined to within a constant factor. To
lift the indeterminacy, one often adopts the
“unit power normalization” (&, &)=1. It is
now easy to show, with the help of the or-
thogonality property, that

& = | N2e, @) + @ &) (6)

The total radiated power is, therefore, thesum
of the powers in € and &, as required. The
“power launching efficiency” is

ke e @ aEE)
I RGN

These various quantities are normally depen-
dent on the choice of the “launching” aper-
ture S’, unless the conditions stated above for
the constancy of the scalar product are satis-
fied. :

At this point, we have solved the problem
of determining the amplitude of the desired
wave, € being given. However, knowledge of
E, alone, and not of €, should be sufficient to
determine the field uniquely. Furthermore,
E, is normally unknown, and must be deter-
mined by use of the boundary conditions
across S’ combined with a knowledge of the
sources inside and outside S;. The resulting
“coupled regions” problem is a very difficult
one to solve. This formulation can be clari-
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CORRESPONDENCE

fied by introducing! the concept of “admit-
tance matrix” looking into a given region.
This procedure does not necessarily facilitate
the actual computational work, but estab-
lishes a welcome link with network theory. To
this effect we introduce a complete set of real
orthonormal vectors @» on S’, and perform
the expansions

Et = Z Vmo_cm
El X thy = Z Imam-

Between the ¥’s and the I’s exists the cir-
cuit relationship

T=%4T ®)

where Y, is the radiating admittance looking
outside S;. The scalar product takes the form

1 . - - -
(éa,, Eb) = '4— (V.z*']b + Vb'Ia*)

1 — — -
=— Va* Yo Vs + Vo-Yo*-Vo*)

-

=—T* (Yo + Yo Vs

i

= Va*-3Co- Vs ®

where 3¢, is the Hermitian part of . When
the medium outside S; is symmetric (i.e.,
e=€, u=fi, the conductivity being incorpo-
rated in ¢), Y, turns out to be symmetric,* and
its Hermitian part is the conductance matrix
Gy. In the absence of energy sources, (€q, &)
is always positive, hence, JC, is positive defi-
nite. To determine ¥, two circuit equations of
the type (8) must be written.! One obtains, by
elimination of T,

I, = Y +Y)7 (10)

where Y is the admittance looking inside S;.
The column vector I, represents the expansion
coefficients /,.. of the surface current produced
by the sources J on the short-circuited surface
S’. In other words, the current density 7. is
equal to 2l,.a,. Inversion of the (Yo+Y.)
matrix gives

V= +Y)* T, = ZI,. (A1)
To obtain optimum launching efficiency, this
value of V should be proportional to the vec-
tor V, corresponding to the desired tangential
field E,. Alternatively, the sources should
induce an (optimum) wall-current density
In= Yo+ Y) T (12)
We can now express X in the following form
E & V-3V
(él; El) 71* * JCO : Vl
_(ZF TR (Z-1))
(Z* 'Tal*) GCO ‘ (Z : Tal)
N AN VAR

- T T i —/ 13
T [z 5002 1., (13)

: J. Van Bladel, “The matrix formulation of scatter-
ing problems,” IEEE Trans. on Microwave Theory and
Techiiques, vol. MTT-14, pp. 130-135, March 1966.

2 J. Van Bladel, ““A generalized reciprocity theorem
for radiating apertures,” Arch. Elekt. Ubertragung, pp.
447-450, August 1966.

Equation (13) shows, in principle at least,
how to determine the coupling coefficient X,
given the actual short-circuit current 7, and
its optimum value 7,;. This relationship can
also be put in the form of a splitting

1y = )\701 + ng (14)

where the two parts, AT,; and T, are orthog-
onal with respect to a scalar product

(Too, Tip) = Toa*-[Z1-3Co- Z|- T (15)

It is to be noticed that the bracketed matrix is
Hermitian.
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The Numerical Solution of
TEM Mode Transmission
Lines with Curved Boundaries

INTRODUCTION

A finite difference solution of Laplace’s
equation has been used by several authors
[1], [2] to obtain the transmission-line param-
eters of uniform TEM transmission lines with
straight-line boundaries. This correspondence
shows that useful results can also be obtained
where the finite difference solution is modi-
fied to permit curved boundaries.

THEORY

Figure 1 shows a finite difference net used
to obtain the odd mode transmission line pa-
rameters of the transmission line with the
cross section shown in Fig. 2. It is seen that
four different types of nodes are produced by
the net. They are:

a) Conducting nodes such as 4
b) Irregular nodes such as B

¢) Exterior nodes such as C

d) Open-circuit nodes such as D
¢) Interior nodes such as E.

Only the irregular nodes are different from
those treated previously [1]. A suitable finite
difference approximation for use at irregular
nodes is given by Forsythe and Wasaw [3]
and Weber [7]:

( 1 n 1 ) Ve V. . Vs
hihs *hshe /" ha(hiths) T ha(hatha)
Vs . Vs
hs(ha+hs)  ha(hethe)
where the notation is given in Fig. 3.
Although the error in this approximation
is of the order O(4) as compared with 0(/%) for

interior nodes it has been shown [4] that the
overall accuracy is still of the order 0(/%).

+
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Fig. 1. Finite difference net.
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Fig. 2. Transmission line cross section.
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Fig. 3. Notation for irregular nodes.

PROGRAMMING

To analyze a particular problem the pro-
gram should only require the boundaries to
be specified. This was achieved by scanning
all the nodes of the net and suitably tagging
each irregular node. All conductor and ex-
terior nodes were also tagged by putting them
at an integral value of potential. Successive
over-relaxation [1] was used to obtain the ap-
proximate potential at each node of the net.
The transmission-line parameters were ob-
tained from either Gauss’s theorem [1] or the
energy [6] which was obtained by interpolat-
ing an approximate but continuous potential
function satisfying the boundary values.



